A remark on the gradient map
Documenta mathematica, Tome 19 (2014), pp. 1017-1023.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For a Hamiltonian action of a compact group $U$ of isometries on a compact Kähler manifold $Z$ and a compatible subgroup $G$ of $U^\C$, we prove that for any closed $G$--invariant subset $Y\subset Z$ the image of the gradient map $\mup(Y)$ is independent of the choice of the invariant Kähler form $\om$ in its cohomology class $[\om]$.
Classification : 53D20
@article{DOCMA_2014__19__a11,
     author = {Biliotti, L. and Ghigi, A. and Heinzner, P.},
     title = {A remark on the gradient map},
     journal = {Documenta mathematica},
     pages = {1017--1023},
     publisher = {mathdoc},
     volume = {19},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a11/}
}
TY  - JOUR
AU  - Biliotti, L.
AU  - Ghigi, A.
AU  - Heinzner, P.
TI  - A remark on the gradient map
JO  - Documenta mathematica
PY  - 2014
SP  - 1017
EP  - 1023
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a11/
LA  - en
ID  - DOCMA_2014__19__a11
ER  - 
%0 Journal Article
%A Biliotti, L.
%A Ghigi, A.
%A Heinzner, P.
%T A remark on the gradient map
%J Documenta mathematica
%D 2014
%P 1017-1023
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a11/
%G en
%F DOCMA_2014__19__a11
Biliotti, L.; Ghigi, A.; Heinzner, P. A remark on the gradient map. Documenta mathematica, Tome 19 (2014), pp. 1017-1023. http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a11/