Birational motivic homotopy theories and the slice filtration
Documenta mathematica, Tome 18 (2013), pp. 51-70.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that there is an equivalence of categories between the orthogonal components for the slice filtration and the birational motivic stable homotopy categories which are constructed in this paper. Relying on this equivalence, we are able to describe the slices for projective spaces (including $\ P ^{\infty}$), Thom spaces and blow ups.
Classification : 14F42
Keywords: birational invariants, motivic homotopy theory, motivic spectral sequence, slice filtration
@article{DOCMA_2013__18__a47,
     author = {Pelaez, Pablo},
     title = {Birational motivic homotopy theories and the slice filtration},
     journal = {Documenta mathematica},
     pages = {51--70},
     publisher = {mathdoc},
     volume = {18},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a47/}
}
TY  - JOUR
AU  - Pelaez, Pablo
TI  - Birational motivic homotopy theories and the slice filtration
JO  - Documenta mathematica
PY  - 2013
SP  - 51
EP  - 70
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a47/
LA  - en
ID  - DOCMA_2013__18__a47
ER  - 
%0 Journal Article
%A Pelaez, Pablo
%T Birational motivic homotopy theories and the slice filtration
%J Documenta mathematica
%D 2013
%P 51-70
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a47/
%G en
%F DOCMA_2013__18__a47
Pelaez, Pablo. Birational motivic homotopy theories and the slice filtration. Documenta mathematica, Tome 18 (2013), pp. 51-70. http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a47/