Lifting tropical intersections
Documenta mathematica, Tome 18 (2013), pp. 121-175.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that points in the intersection of the tropicalizations of subvarieties of a torus lift to algebraic intersection points with expected multiplicities, provided that the tropicalizations intersect in the expected dimension. We also prove a similar result for intersections inside an ambient subvariety of the torus, when the tropicalizations meet inside a facet of multiplicity 1. The proofs require not only the geometry of compactified tropicalizations of subvarieties of toric varieties, but also new results about the geometry of finite type schemes over non-noetherian valuation rings of rank 1. In particular, we prove subadditivity of codimension and a principle of continuity for intersections in smooth schemes over such rings, generalizing well-known theorems over regular local rings. An appendix on the topology of finite type morphisms may also be of independent interest.
Classification : 14T05, 14C17, 14M25, 14A15
Keywords: tropical geometry, intersection theory, schemes over valuation rings
@article{DOCMA_2013__18__a44,
     author = {Osserman, Brian and Payne, Sam},
     title = {Lifting tropical intersections},
     journal = {Documenta mathematica},
     pages = {121--175},
     publisher = {mathdoc},
     volume = {18},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a44/}
}
TY  - JOUR
AU  - Osserman, Brian
AU  - Payne, Sam
TI  - Lifting tropical intersections
JO  - Documenta mathematica
PY  - 2013
SP  - 121
EP  - 175
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a44/
LA  - en
ID  - DOCMA_2013__18__a44
ER  - 
%0 Journal Article
%A Osserman, Brian
%A Payne, Sam
%T Lifting tropical intersections
%J Documenta mathematica
%D 2013
%P 121-175
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a44/
%G en
%F DOCMA_2013__18__a44
Osserman, Brian; Payne, Sam. Lifting tropical intersections. Documenta mathematica, Tome 18 (2013), pp. 121-175. http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a44/