Large parallel volumes of finite and compact sets in d-dimensional Euclidean space
Documenta mathematica, Tome 18 (2013), pp. 275-295.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The $r$-parallel volume $V(C_r)$ of a compact subset $C$ in $d$-di­men­sional Euclidean space is the volume of the set $C_r$ of all points of Euclidean distance at most $r>0$ from $C$. According to Steiner's formula, $V(C_r)$ is a polynomial in $r$ when $C$ is convex. For finite sets $C$ satisfying a certain geometric condition, a Laurent expansion of $V(C_r)$ for large $r$ is obtained. The dependence of the coefficients on the geometry of $C$ is explicitly given by so-called intrinsic power volumes of $C$. In the planar case such an expansion holds for all finite sets $C$. Finally, when $C$ is a compact set in arbitrary dimension, it is shown that the difference of large $r$-parallel volumes of $C$ and of its convex hull behaves like $cr^{d-3}$, where $c$ is an intrinsic power volume of $C$.
Classification : 52A39, 52B11, 41A10
Keywords: large parallel sets, Laurent expansion of parallel volume, Steiner formula, intrinsic power volume
@article{DOCMA_2013__18__a41,
     author = {Kampf, J. and Kiderlen, M.},
     title = {Large parallel volumes of finite and compact sets in d-dimensional {Euclidean} space},
     journal = {Documenta mathematica},
     pages = {275--295},
     publisher = {mathdoc},
     volume = {18},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a41/}
}
TY  - JOUR
AU  - Kampf, J.
AU  - Kiderlen, M.
TI  - Large parallel volumes of finite and compact sets in d-dimensional Euclidean space
JO  - Documenta mathematica
PY  - 2013
SP  - 275
EP  - 295
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a41/
LA  - en
ID  - DOCMA_2013__18__a41
ER  - 
%0 Journal Article
%A Kampf, J.
%A Kiderlen, M.
%T Large parallel volumes of finite and compact sets in d-dimensional Euclidean space
%J Documenta mathematica
%D 2013
%P 275-295
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a41/
%G en
%F DOCMA_2013__18__a41
Kampf, J.; Kiderlen, M. Large parallel volumes of finite and compact sets in d-dimensional Euclidean space. Documenta mathematica, Tome 18 (2013), pp. 275-295. http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a41/