Transportation-cost inequalities on path space over manifolds with boundary
Documenta mathematica, Tome 18 (2013), pp. 297-322.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $L=\Delta + Z$ for a $C^1$ vector field $Z$ on a complete Riemannian manifold possibly with a boundary. A number of transportation-cost inequalities on the path space for the (reflecting) $L$-diffusion process are proved to be equivalent to the curvature condition ${Ric}-\nabla Z\ge - K$ and the convexity of the boundary (if exists). These inequalities are new even for manifolds without boundary, and are partly extended to non-convex manifolds by using a conformal change of metric which makes the boundary from non-convex to convex.
Classification : 60J60, 58G60
Keywords: transportation-cost inequality, curvature, second fundamental form, path space
@article{DOCMA_2013__18__a40,
     author = {Wang, Feng-Yu},
     title = {Transportation-cost inequalities on path space over manifolds with boundary},
     journal = {Documenta mathematica},
     pages = {297--322},
     publisher = {mathdoc},
     volume = {18},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a40/}
}
TY  - JOUR
AU  - Wang, Feng-Yu
TI  - Transportation-cost inequalities on path space over manifolds with boundary
JO  - Documenta mathematica
PY  - 2013
SP  - 297
EP  - 322
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a40/
LA  - en
ID  - DOCMA_2013__18__a40
ER  - 
%0 Journal Article
%A Wang, Feng-Yu
%T Transportation-cost inequalities on path space over manifolds with boundary
%J Documenta mathematica
%D 2013
%P 297-322
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a40/
%G en
%F DOCMA_2013__18__a40
Wang, Feng-Yu. Transportation-cost inequalities on path space over manifolds with boundary. Documenta mathematica, Tome 18 (2013), pp. 297-322. http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a40/