On the generalized semi-relativistic Schrödinger-Poisson system in $\mathbb{R}^n$
Documenta mathematica, Tome 18 (2013), pp. 343-357.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Cauchy problem for the semi-relativistic Schrödinger-Poisson system of equations is studied in $R^n, n \ge 1$, for a wide class of nonlocal interactions. Furthermore, the asymptotic behavior of the solution as the mass tends to infinity is rigorously discussed, and compared with solutions to the non-relativistic Schrödinger-Poisson system.
Classification : 82D10, 82C10
Keywords: Schrödinger-Poisson system, mean-field dynamics, long-range interaction, functional spaces, density matrices, Cauchy problem, global existence, infinite mass limit
@article{DOCMA_2013__18__a38,
     author = {Salem, Walid Abou and Chen, Thomas and Vougalter, Vitali},
     title = {On the generalized semi-relativistic {Schr\"odinger-Poisson} system in $\mathbb{R}^n$},
     journal = {Documenta mathematica},
     pages = {343--357},
     publisher = {mathdoc},
     volume = {18},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a38/}
}
TY  - JOUR
AU  - Salem, Walid Abou
AU  - Chen, Thomas
AU  - Vougalter, Vitali
TI  - On the generalized semi-relativistic Schrödinger-Poisson system in $\mathbb{R}^n$
JO  - Documenta mathematica
PY  - 2013
SP  - 343
EP  - 357
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a38/
LA  - en
ID  - DOCMA_2013__18__a38
ER  - 
%0 Journal Article
%A Salem, Walid Abou
%A Chen, Thomas
%A Vougalter, Vitali
%T On the generalized semi-relativistic Schrödinger-Poisson system in $\mathbb{R}^n$
%J Documenta mathematica
%D 2013
%P 343-357
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a38/
%G en
%F DOCMA_2013__18__a38
Salem, Walid Abou; Chen, Thomas; Vougalter, Vitali. On the generalized semi-relativistic Schrödinger-Poisson system in $\mathbb{R}^n$. Documenta mathematica, Tome 18 (2013), pp. 343-357. http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a38/