Realizability and admissibility under extension of $p$-adic and number fields.
Documenta mathematica, Tome 18 (2013), pp. 359-382.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A finite group $G$ is $K$-admissible if there is a $G$-crossed product $K$-division algebra. In this manuscript we study the behavior of admissibility under extensions of number fields $M/K$. We show that in many cases, including Sylow metacyclic and nilpotent groups whose order is prime to the number of roots of unity in $M$, a $K$-admissible group $G$ is $M$-admissible if and only if $G$ satisfies the easily verifiable Liedahl condition over $M$.
Classification : 16K20, 12F12
Keywords: admissible group, adequate field, tame admissibility, Liedahl's condition
@article{DOCMA_2013__18__a37,
     author = {Neftin, Danny and Vishne, Uzi},
     title = {Realizability and admissibility under extension of $p$-adic and number fields.},
     journal = {Documenta mathematica},
     pages = {359--382},
     publisher = {mathdoc},
     volume = {18},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a37/}
}
TY  - JOUR
AU  - Neftin, Danny
AU  - Vishne, Uzi
TI  - Realizability and admissibility under extension of $p$-adic and number fields.
JO  - Documenta mathematica
PY  - 2013
SP  - 359
EP  - 382
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a37/
LA  - en
ID  - DOCMA_2013__18__a37
ER  - 
%0 Journal Article
%A Neftin, Danny
%A Vishne, Uzi
%T Realizability and admissibility under extension of $p$-adic and number fields.
%J Documenta mathematica
%D 2013
%P 359-382
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a37/
%G en
%F DOCMA_2013__18__a37
Neftin, Danny; Vishne, Uzi. Realizability and admissibility under extension of $p$-adic and number fields.. Documenta mathematica, Tome 18 (2013), pp. 359-382. http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a37/