On Zagier's conjecture for base changes of elliptic curves
Documenta mathematica, Tome 18 (2013), pp. 395-412.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $E$ be an elliptic curve over Q, and let $F$ be a finite abelian extension of Q. Using Beilinson's theorem on a suitable modular curve, we prove a weak version of Zagier's conjecture for $L(E_F,2)$, where $E_F$ is the base change of $E$ to $F$.
Classification : 11G40, 11G55, 19F27
Keywords: elliptic curves, $L$-functions, elliptic dilogarithm, Zagier's conjecture, regulators, Beilinson's conjecture
@article{DOCMA_2013__18__a34,
     author = {Brunault, Fran\c{c}ois},
     title = {On {Zagier's} conjecture for base changes of elliptic curves},
     journal = {Documenta mathematica},
     pages = {395--412},
     publisher = {mathdoc},
     volume = {18},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a34/}
}
TY  - JOUR
AU  - Brunault, François
TI  - On Zagier's conjecture for base changes of elliptic curves
JO  - Documenta mathematica
PY  - 2013
SP  - 395
EP  - 412
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a34/
LA  - en
ID  - DOCMA_2013__18__a34
ER  - 
%0 Journal Article
%A Brunault, François
%T On Zagier's conjecture for base changes of elliptic curves
%J Documenta mathematica
%D 2013
%P 395-412
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a34/
%G en
%F DOCMA_2013__18__a34
Brunault, François. On Zagier's conjecture for base changes of elliptic curves. Documenta mathematica, Tome 18 (2013), pp. 395-412. http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a34/