The variety of polar simplices
Documenta mathematica, Tome 18 (2013), pp. 469-505.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A collection of n distinct hyperplanes $L_i = {l_i=0} \subset \PP^{n-1}$, the $(n-1)$-dimensional projective space over an algebraically closed field of characteristic not equal to 2, is a polar simplex of a smooth quadric $Q^{n-2}={q=0}$, if each $L_i$ is the polar hyperplane of the point $ p_i = \bigcap_{j \ne i} L_j$, equivalently, if $q= l_1^2+\ldots+l_n^2$ for suitable choices of the linear forms $l_i$. In this paper we study the closure $ VPS(Q,n) \subset \Hilb_{n}(\check \PP^{n-1})$ of the variety of sums of powers presenting $Q$ from a global viewpoint: $VPS(Q,n)$ is a smooth Fano variety of index 2 and Picard number 1 when $n6$, and $VPS(Q,n)$ is singular when $n\geq 6$.
Classification : 14J45, 14M
Keywords: Fano n-folds, quadric, polar simplex, syzygies
@article{DOCMA_2013__18__a32,
     author = {Ranestad, Kristian and Schreyer, Frank-Olaf},
     title = {The variety of polar simplices},
     journal = {Documenta mathematica},
     pages = {469--505},
     publisher = {mathdoc},
     volume = {18},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a32/}
}
TY  - JOUR
AU  - Ranestad, Kristian
AU  - Schreyer, Frank-Olaf
TI  - The variety of polar simplices
JO  - Documenta mathematica
PY  - 2013
SP  - 469
EP  - 505
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a32/
LA  - en
ID  - DOCMA_2013__18__a32
ER  - 
%0 Journal Article
%A Ranestad, Kristian
%A Schreyer, Frank-Olaf
%T The variety of polar simplices
%J Documenta mathematica
%D 2013
%P 469-505
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a32/
%G en
%F DOCMA_2013__18__a32
Ranestad, Kristian; Schreyer, Frank-Olaf. The variety of polar simplices. Documenta mathematica, Tome 18 (2013), pp. 469-505. http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a32/