Stable maps and Chow groups
Documenta mathematica, Tome 18 (2013), pp. 507-517.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: According to the Bloch--Beilinson conjectures, an automorphism of a K3 surface $X$ that acts as the identity on the transcendental lattice should act trivially on $\CH^2(X)$. We discuss this conjecture for symplectic involutions and prove it in one third of all cases. The main point is to use special elliptic K3 surfaces and stable maps to produce covering families of elliptic curves on the generic K3 surface that are invariant under the involution.
Classification : 14J28, 14J50
@article{DOCMA_2013__18__a31,
     author = {Huybrechts, D. and Kemeny, M.},
     title = {Stable maps and {Chow} groups},
     journal = {Documenta mathematica},
     pages = {507--517},
     publisher = {mathdoc},
     volume = {18},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a31/}
}
TY  - JOUR
AU  - Huybrechts, D.
AU  - Kemeny, M.
TI  - Stable maps and Chow groups
JO  - Documenta mathematica
PY  - 2013
SP  - 507
EP  - 517
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a31/
LA  - en
ID  - DOCMA_2013__18__a31
ER  - 
%0 Journal Article
%A Huybrechts, D.
%A Kemeny, M.
%T Stable maps and Chow groups
%J Documenta mathematica
%D 2013
%P 507-517
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a31/
%G en
%F DOCMA_2013__18__a31
Huybrechts, D.; Kemeny, M. Stable maps and Chow groups. Documenta mathematica, Tome 18 (2013), pp. 507-517. http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a31/