Nekovár duality over p-adic Lie extensions of global fields
Documenta mathematica, Tome 18 (2013), pp. 621-678.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Tate duality is a Pontryagin duality between the $i$th Galois cohomology group of the absolute Galois group of a local field with coefficents in a finite module and the $(2-i)$th cohomology group of the Tate twist of the Pontryagin dual of the module. Poitou-Tate duality has a similar formulation, but the duality now takes place between Galois cohomology groups of a global field with restricted ramification and compactly-supported cohomology groups. Nekovár proved analogues of these in which the module in question is a finitely generated module $T$ over a complete commutative local Noetherian ring $R$ with a commuting Galois action, or a bounded complex thereof, and the Pontryagin dual is replaced with the Grothendieck dual $T^*$, which is a bounded complex of the same form. The cochain complexes computing the Galois cohomology groups of $T$ and $T^*(1)$ are then Grothendieck dual to each other in the derived category of finitely generated $R$-modules. Given a $p$-adic Lie extension of the ground field, we extend these to dualities between Galois cochain complexes of induced modules of $T$ and $T^*(1)$ in the derived category of finitely generated modules over the possibly noncommutative Iwasawa algebra with $R$-coefficients.
Classification : 11R23, 11R34, 11S25, 16E35, 18E30
Keywords: Galois cohomology, Tate duality, poitou-Tate duality, Grothendieck duality
@article{DOCMA_2013__18__a28,
     author = {Lim, Meng Fai and Sharifi, Romyar T.},
     title = {Nekov\'ar duality over p-adic {Lie} extensions of global fields},
     journal = {Documenta mathematica},
     pages = {621--678},
     publisher = {mathdoc},
     volume = {18},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a28/}
}
TY  - JOUR
AU  - Lim, Meng Fai
AU  - Sharifi, Romyar T.
TI  - Nekovár duality over p-adic Lie extensions of global fields
JO  - Documenta mathematica
PY  - 2013
SP  - 621
EP  - 678
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a28/
LA  - en
ID  - DOCMA_2013__18__a28
ER  - 
%0 Journal Article
%A Lim, Meng Fai
%A Sharifi, Romyar T.
%T Nekovár duality over p-adic Lie extensions of global fields
%J Documenta mathematica
%D 2013
%P 621-678
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a28/
%G en
%F DOCMA_2013__18__a28
Lim, Meng Fai; Sharifi, Romyar T. Nekovár duality over p-adic Lie extensions of global fields. Documenta mathematica, Tome 18 (2013), pp. 621-678. http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a28/