A geometric quantization of the Kostant-Sekiguchi correspondence for scalar type unitary highest weight representations
Documenta mathematica, Tome 18 (2013), pp. 785-855.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For any Hermitian Lie group $G$ of tube type we give a geometric quantization procedure of certain $K_\CC$-orbits in $\frakp_\CC^*$ to obtain all scalar type highest weight representations. Here $K_\CC$ is the complexification of a maximal compact subgroup $K\subseteq G$ with corresponding Cartan decomposition $\frakg=\frakk+\frakp$ of the Lie algebra of $G$. We explicitly realize every such representation $\pi$ on a Fock space consisting of square integrable holomorphic functions on its associated variety $\Ass(\pi)\subseteq\frakp_\CC^*$. The associated variety $\Ass(\pi)$ is the closure of a single nilpotent $K_\CC$-orbit $\calO^{K_\CC}\subseteq\frakp_\CC^*$ which corresponds by the Kostant--Sekiguchi correspondence to a nilpotent coadjoint $G$-orbit $\calO^G\subseteq\frakg^*$. The known Schrödinger model of $\pi$ is a realization on $L^2(\calO)$, where $\calO\subseteq\calO^G$ is a Lagrangian submanifold. We construct an intertwining operator from the Schrödinger model to the new Fock model, the generalized Segal--Bargmann transform, which gives a geometric quantization of the Kostant--Sekiguchi correspondence (a notion invented by Hilgert, Kobayashi, Ørsted and the author). The main tool in our construction are multivariable $I$- and $K$-Bessel functions on Jordan algebras which appear in the measure of $\calO^{K_\CC}$, as reproducing kernel of the Fock space and as integral kernel of the Segal--Bargmann transform. As a corollary to our construction we also obtain the integral kernel of the unitary inversion operator in the Schrödinger model in terms of a multivariable $J$-Bessel function as well as explicit Whittaker vectors.
Classification : 22E45, 17C30, 30H20, 33C70, 44A15, 46E22
Keywords: unitary highest weight representation, orbit method, Schrödinger model, Fock model, Jordan algebra, Segal--Bargmann transform, Bessel function, Bessel operator, unitary inversion operator, Whittaker vectors, branching law
@article{DOCMA_2013__18__a24,
     author = {M\"ollers, Jan},
     title = {A geometric quantization of the {Kostant-Sekiguchi} correspondence for scalar type unitary highest weight representations},
     journal = {Documenta mathematica},
     pages = {785--855},
     publisher = {mathdoc},
     volume = {18},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a24/}
}
TY  - JOUR
AU  - Möllers, Jan
TI  - A geometric quantization of the Kostant-Sekiguchi correspondence for scalar type unitary highest weight representations
JO  - Documenta mathematica
PY  - 2013
SP  - 785
EP  - 855
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a24/
LA  - en
ID  - DOCMA_2013__18__a24
ER  - 
%0 Journal Article
%A Möllers, Jan
%T A geometric quantization of the Kostant-Sekiguchi correspondence for scalar type unitary highest weight representations
%J Documenta mathematica
%D 2013
%P 785-855
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a24/
%G en
%F DOCMA_2013__18__a24
Möllers, Jan. A geometric quantization of the Kostant-Sekiguchi correspondence for scalar type unitary highest weight representations. Documenta mathematica, Tome 18 (2013), pp. 785-855. http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a24/