On Artin representations and nearly ordinary Hecke algebras over totally real fields
Documenta mathematica, Tome 18 (2013), pp. 997-1038.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove many new cases of the strong Artin conjecture for two-dimensional, totally odd, insoluble (icosahedral) representations $\mathrm{Gal}(\overline{F}/F)\rightarrow GL_2(\mathbf{C})$ of the absolute Galois group of a totally real field $F$.
Classification : 11G80, 11F33, 11F41, 14G22, 14G35
Keywords: Galois representations, p-adic modular forms, Hilbert modular varieties
@article{DOCMA_2013__18__a19,
     author = {Sasaki, Shu},
     title = {On {Artin} representations and nearly ordinary {Hecke} algebras over totally real fields},
     journal = {Documenta mathematica},
     pages = {997--1038},
     publisher = {mathdoc},
     volume = {18},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a19/}
}
TY  - JOUR
AU  - Sasaki, Shu
TI  - On Artin representations and nearly ordinary Hecke algebras over totally real fields
JO  - Documenta mathematica
PY  - 2013
SP  - 997
EP  - 1038
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a19/
LA  - en
ID  - DOCMA_2013__18__a19
ER  - 
%0 Journal Article
%A Sasaki, Shu
%T On Artin representations and nearly ordinary Hecke algebras over totally real fields
%J Documenta mathematica
%D 2013
%P 997-1038
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a19/
%G en
%F DOCMA_2013__18__a19
Sasaki, Shu. On Artin representations and nearly ordinary Hecke algebras over totally real fields. Documenta mathematica, Tome 18 (2013), pp. 997-1038. http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a19/