Random walks in compact groups
Documenta mathematica, Tome 18 (2013), pp. 1137-1175.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $X_1,X_2,\ldots$ be independent identically distributed random elements of a compact group $G$. We discuss the speed of convergence of the law of the product $X_l\cdots X_1$ to the Haar measure. We give poly-log estimates for certain finite groups and for compact semi-simple Lie groups. We improve earlier results of Solovay, Kitaev, Gamburd, Shahshahani and Dinai.
Classification : 60B15, 22E30, 05E15
Keywords: random walk, spectral gap, diameter, poly-log, Solovay-Kitaev, compact group, Cayley graph
@article{DOCMA_2013__18__a15,
     author = {Varj\'u, P.P.},
     title = {Random walks in compact groups},
     journal = {Documenta mathematica},
     pages = {1137--1175},
     publisher = {mathdoc},
     volume = {18},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a15/}
}
TY  - JOUR
AU  - Varjú, P.P.
TI  - Random walks in compact groups
JO  - Documenta mathematica
PY  - 2013
SP  - 1137
EP  - 1175
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a15/
LA  - en
ID  - DOCMA_2013__18__a15
ER  - 
%0 Journal Article
%A Varjú, P.P.
%T Random walks in compact groups
%J Documenta mathematica
%D 2013
%P 1137-1175
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a15/
%G en
%F DOCMA_2013__18__a15
Varjú, P.P. Random walks in compact groups. Documenta mathematica, Tome 18 (2013), pp. 1137-1175. http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a15/