Torelli theorem for the Deligne-Hitchin moduli space. II
Documenta mathematica, Tome 18 (2013), pp. 1177-1189.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $X$ and $X'$ be compact Riemann surfaces of genus at least three. Let $G$ and $G'$ be nontrivial connected semisimple linear algebraic groups over $\CC$. If some components $\MDH^d(X,G)$ and $\MDH^{d'}(X',G')$ of the associated Deligne--Hitchin moduli spaces are biholomorphic, then $X'$ is isomorphic to $X$ or to the conjugate Riemann surface $\Xbar$.
Classification : 14D20, 14C34
Keywords: principal bundle, Deligne--Hitchin moduli space, Higgs bundle, vector field
@article{DOCMA_2013__18__a14,
     author = {Biswas, Indranil and G\'omez, Tom\'as L.},
     title = {Torelli theorem for the {Deligne-Hitchin} moduli space. {II}},
     journal = {Documenta mathematica},
     pages = {1177--1189},
     publisher = {mathdoc},
     volume = {18},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a14/}
}
TY  - JOUR
AU  - Biswas, Indranil
AU  - Gómez, Tomás L.
TI  - Torelli theorem for the Deligne-Hitchin moduli space. II
JO  - Documenta mathematica
PY  - 2013
SP  - 1177
EP  - 1189
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a14/
LA  - en
ID  - DOCMA_2013__18__a14
ER  - 
%0 Journal Article
%A Biswas, Indranil
%A Gómez, Tomás L.
%T Torelli theorem for the Deligne-Hitchin moduli space. II
%J Documenta mathematica
%D 2013
%P 1177-1189
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a14/
%G en
%F DOCMA_2013__18__a14
Biswas, Indranil; Gómez, Tomás L. Torelli theorem for the Deligne-Hitchin moduli space. II. Documenta mathematica, Tome 18 (2013), pp. 1177-1189. http://geodesic.mathdoc.fr/item/DOCMA_2013__18__a14/