A root space decomposition for finite vertex algebras
Documenta mathematica, Tome 17 (2012), pp. 783-805.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $L$ be a Lie pseudoalgebra, $a \in L$. We show that, if $a$ generates a (finite) solvable subalgebra $S = \langle a \rangle \subset L$, then one may find a lifting $\bar a \in S$ of $[a] \in S/S'$ such that $\langle \bar a \rangle$ is nilpotent. We then apply this result towards vertex algebras: we show that every finite vertex algebra $V$ admits a decomposition into a semi-direct product $V = U \sd N$, where $U$ is a subalgebra of $V$ whose underlying Lie conformal algebra $U^\lie$ is a nilpotent self-normalizing subalgebra of $V^\lie$, and $N = V^{[\infty]}$ is a canonically determined ideal contained in the nilradical $\Nil V$.
Classification : 17B69
Keywords: pseudoalgebra, vertex algebra
@article{DOCMA_2012__17__a7,
     author = {D'Andrea, A. and Marchei, G.},
     title = {A root space decomposition for finite vertex algebras},
     journal = {Documenta mathematica},
     pages = {783--805},
     publisher = {mathdoc},
     volume = {17},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a7/}
}
TY  - JOUR
AU  - D'Andrea, A.
AU  - Marchei, G.
TI  - A root space decomposition for finite vertex algebras
JO  - Documenta mathematica
PY  - 2012
SP  - 783
EP  - 805
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a7/
LA  - en
ID  - DOCMA_2012__17__a7
ER  - 
%0 Journal Article
%A D'Andrea, A.
%A Marchei, G.
%T A root space decomposition for finite vertex algebras
%J Documenta mathematica
%D 2012
%P 783-805
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a7/
%G en
%F DOCMA_2012__17__a7
D'Andrea, A.; Marchei, G. A root space decomposition for finite vertex algebras. Documenta mathematica, Tome 17 (2012), pp. 783-805. http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a7/