Symplectic involutions of $K3$ surfaces act trivially on $\mathrm{CH}_0$
Documenta mathematica, Tome 17 (2012), pp. 851-860.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A symplectic involution on a $K3$ surface is an involution which preserves the holomorphic 2-form. We prove that such a symplectic involution acts as the identity on the $CH_0$ group of the $K3$ surface, as predicted by Bloch's conjecture.
Classification : 14C25, 14J28
Keywords: zero cycles, Bloch's conjecture, K3 surfaces
@article{DOCMA_2012__17__a5,
     author = {Voisin, Claire},
     title = {Symplectic involutions of $K3$ surfaces act trivially on $\mathrm{CH}_0$},
     journal = {Documenta mathematica},
     pages = {851--860},
     publisher = {mathdoc},
     volume = {17},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a5/}
}
TY  - JOUR
AU  - Voisin, Claire
TI  - Symplectic involutions of $K3$ surfaces act trivially on $\mathrm{CH}_0$
JO  - Documenta mathematica
PY  - 2012
SP  - 851
EP  - 860
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a5/
LA  - en
ID  - DOCMA_2012__17__a5
ER  - 
%0 Journal Article
%A Voisin, Claire
%T Symplectic involutions of $K3$ surfaces act trivially on $\mathrm{CH}_0$
%J Documenta mathematica
%D 2012
%P 851-860
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a5/
%G en
%F DOCMA_2012__17__a5
Voisin, Claire. Symplectic involutions of $K3$ surfaces act trivially on $\mathrm{CH}_0$. Documenta mathematica, Tome 17 (2012), pp. 851-860. http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a5/