The topological Singer construction
Documenta mathematica, Tome 17 (2012), pp. 861-909.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the continuous (co-)homology of towers of spectra, with emphasis on a tower with homotopy inverse limit the Tate construction $X^{tG}$ on a $G$-spectrum $X$. When $G=C_p$ is cyclic of prime order and $X=B^{\wedge p}$ is the $p$-th smash power of a bounded below spectrum $B$ with $H_*(B; \F_p)$ of finite type, we prove that $(B^{\wedge p})^{tC_p}$ is a topological model for the Singer construction $R_+(H^*(B; \F_p))$ on $H^*(B; \F_p)$. There is a stable map $\epsilon_B \: B\to (B^{\wedge p})^{tC_p}$ inducing the $\Ext_\A$-equivalence $\epsilon\: R_+(H^*(B; \F_p))\to H^*(B; \F_p)$. Hence $\epsilon_B$ and the canonical map $\\Gamma \: (B^{\wedge p})^{C_p}\to (B^{\wedge p})^{hC_p}$ are $p$-adic equivalences.
Classification : 55P42, 55P91, 55S10, 55T15
Keywords: singer construction, Tate construction, limit of Adams spectral sequences, $\Ext$-equivalence
@article{DOCMA_2012__17__a4,
     author = {Lun{\o}e-Nielsen, Sverre and Rognes, John},
     title = {The topological {Singer} construction},
     journal = {Documenta mathematica},
     pages = {861--909},
     publisher = {mathdoc},
     volume = {17},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a4/}
}
TY  - JOUR
AU  - Lunøe-Nielsen, Sverre
AU  - Rognes, John
TI  - The topological Singer construction
JO  - Documenta mathematica
PY  - 2012
SP  - 861
EP  - 909
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a4/
LA  - en
ID  - DOCMA_2012__17__a4
ER  - 
%0 Journal Article
%A Lunøe-Nielsen, Sverre
%A Rognes, John
%T The topological Singer construction
%J Documenta mathematica
%D 2012
%P 861-909
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a4/
%G en
%F DOCMA_2012__17__a4
Lunøe-Nielsen, Sverre; Rognes, John. The topological Singer construction. Documenta mathematica, Tome 17 (2012), pp. 861-909. http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a4/