Equivariant cobordism of schemes
Documenta mathematica, Tome 17 (2012), pp. 95-134.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $k$ be a field of characteristic zero. For a linear algebraic group $G$ over $k$ acting on a scheme $X$, we define the equivariant algebraic cobordism of $X$ and establish its basic properties. We explicitly describe the relation of equivariant cobordism with equivariant Chow groups, $K$-groups and complex cobordism. We show that the rational equivariant cobordism of a $G$-scheme can be expressed as the Weyl group invariants of the equivariant cobordism for the action of a maximal torus of $G$. As applications, we show that the rational algebraic cobordism of the classifying space of a complex linear algebraic group is isomorphic to its complex cobordism.
Classification : 14C25, 19E15
Keywords: algebraic cobordism, group actions
@article{DOCMA_2012__17__a26,
     author = {Krishna, Amalendu},
     title = {Equivariant cobordism of schemes},
     journal = {Documenta mathematica},
     pages = {95--134},
     publisher = {mathdoc},
     volume = {17},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a26/}
}
TY  - JOUR
AU  - Krishna, Amalendu
TI  - Equivariant cobordism of schemes
JO  - Documenta mathematica
PY  - 2012
SP  - 95
EP  - 134
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a26/
LA  - en
ID  - DOCMA_2012__17__a26
ER  - 
%0 Journal Article
%A Krishna, Amalendu
%T Equivariant cobordism of schemes
%J Documenta mathematica
%D 2012
%P 95-134
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a26/
%G en
%F DOCMA_2012__17__a26
Krishna, Amalendu. Equivariant cobordism of schemes. Documenta mathematica, Tome 17 (2012), pp. 95-134. http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a26/