Modularity of the Consani-Scholten quintic. With an appendix by José Burgos Gil and Ariel Pacetti
Documenta mathematica, Tome 17 (2012), pp. 953-987.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove that the Consani-Scholten quintic, a Calabi-Yau threefold over $\Q$, is Hilbert modular. For this, we refine several techniques known from the context of modular forms. Most notably, we extend the Faltings-Serre-Livné method to induced four-dimensional Galois representations over $\Q$. We also need a Sturm bound for Hilbert modular forms; this is developed in an appendix by José Burgos Gil and the second author.
Classification : 11F41, 11F80, 11G40, 14G10, 14J32
Keywords: consani-scholten quintic, Hilbert modular form, faltings--Serre--livné method, Sturm bound
@article{DOCMA_2012__17__a2,
     author = {Dieulefait, Luis and Pacetti, Ariel and Sch\"utt, Matthias},
     title = {Modularity of the {Consani-Scholten} quintic. {With} an appendix by {Jos\'e} {Burgos} {Gil} and {Ariel} {Pacetti}},
     journal = {Documenta mathematica},
     pages = {953--987},
     publisher = {mathdoc},
     volume = {17},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a2/}
}
TY  - JOUR
AU  - Dieulefait, Luis
AU  - Pacetti, Ariel
AU  - Schütt, Matthias
TI  - Modularity of the Consani-Scholten quintic. With an appendix by José Burgos Gil and Ariel Pacetti
JO  - Documenta mathematica
PY  - 2012
SP  - 953
EP  - 987
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a2/
LA  - en
ID  - DOCMA_2012__17__a2
ER  - 
%0 Journal Article
%A Dieulefait, Luis
%A Pacetti, Ariel
%A Schütt, Matthias
%T Modularity of the Consani-Scholten quintic. With an appendix by José Burgos Gil and Ariel Pacetti
%J Documenta mathematica
%D 2012
%P 953-987
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a2/
%G en
%F DOCMA_2012__17__a2
Dieulefait, Luis; Pacetti, Ariel; Schütt, Matthias. Modularity of the Consani-Scholten quintic. With an appendix by José Burgos Gil and Ariel Pacetti. Documenta mathematica, Tome 17 (2012), pp. 953-987. http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a2/