On the Weil-étale topos of regular arithmetic schemes
Documenta mathematica, Tome 17 (2012), pp. 313-399.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We define and study a Weil-étale topos for any regular, proper scheme $\X$ over $\Spec(\bz)$ which has some of the properties suggested by Lichtenbaum for such a topos. In particular, the cohomology with $\tr$-coefficients has the expected relation to $\zeta(\X,s)$ at $s=0$ if the Hasse-Weil L-functions $L(h^i(\X_\bq),s)$ have the expected meromorphic continuation and functional equation. If $\X$ has characteristic $p$ the cohomology with $\bz$-coefficients also has the expected relation to $\zeta(\X,s)$ and our cohomology groups recover those previously studied by Lichtenbaum and Geisser.
Classification : 14F20, 11S40, 11G40, 18F10
@article{DOCMA_2012__17__a19,
     author = {Flach, Matthias and Morin, Baptiste},
     title = {On the {Weil-\'etale} topos of regular arithmetic schemes},
     journal = {Documenta mathematica},
     pages = {313--399},
     publisher = {mathdoc},
     volume = {17},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a19/}
}
TY  - JOUR
AU  - Flach, Matthias
AU  - Morin, Baptiste
TI  - On the Weil-étale topos of regular arithmetic schemes
JO  - Documenta mathematica
PY  - 2012
SP  - 313
EP  - 399
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a19/
LA  - en
ID  - DOCMA_2012__17__a19
ER  - 
%0 Journal Article
%A Flach, Matthias
%A Morin, Baptiste
%T On the Weil-étale topos of regular arithmetic schemes
%J Documenta mathematica
%D 2012
%P 313-399
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a19/
%G en
%F DOCMA_2012__17__a19
Flach, Matthias; Morin, Baptiste. On the Weil-étale topos of regular arithmetic schemes. Documenta mathematica, Tome 17 (2012), pp. 313-399. http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a19/