Cyclic cohomology of Lie algebras
Documenta mathematica, Tome 17 (2012), pp. 483-515.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We define and completely determine the category of Yetter-Drinfeld modules over Lie algebras. We prove a one to one correspondence between Yetter-Drinfeld modules over a Lie algebra and those over the universal enveloping algebra of the Lie algebra. We associate a mixed complex to a Lie algebra and a stable-Yetter-Drinfeld module over it. We show that the (truncated) Weil algebra, the Weil algebra with generalized coefficients defined by Alekseev-Meinrenken, and the perturbed Koszul complex introduced by Kumar-Vergne are examples of such a mixed complex.
Classification : 17B56, 16T15, 16E45, 19D55
Keywords: Yetter-Drinfeld modules, Lie algebras, mixed complex, Weil algebra, Koszul complex, Hopf cyclic cohomology
@article{DOCMA_2012__17__a15,
     author = {Rangipour, Bahram and S\"utl\"u, Serkan},
     title = {Cyclic cohomology of {Lie} algebras},
     journal = {Documenta mathematica},
     pages = {483--515},
     publisher = {mathdoc},
     volume = {17},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a15/}
}
TY  - JOUR
AU  - Rangipour, Bahram
AU  - Sütlü, Serkan
TI  - Cyclic cohomology of Lie algebras
JO  - Documenta mathematica
PY  - 2012
SP  - 483
EP  - 515
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a15/
LA  - en
ID  - DOCMA_2012__17__a15
ER  - 
%0 Journal Article
%A Rangipour, Bahram
%A Sütlü, Serkan
%T Cyclic cohomology of Lie algebras
%J Documenta mathematica
%D 2012
%P 483-515
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a15/
%G en
%F DOCMA_2012__17__a15
Rangipour, Bahram; Sütlü, Serkan. Cyclic cohomology of Lie algebras. Documenta mathematica, Tome 17 (2012), pp. 483-515. http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a15/