On the structure of Selmer groups of lambda-adic deformations over $p$-adic Lie extensions
Documenta mathematica, Tome 17 (2012), pp. 573-606.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we consider the $\Lambda$-adic deformations of Galois representations associated to elliptic curves. We prove that the Pontryagin dual of the Selmer group of a $\Lambda$-adic deformation over certain $p$-adic Lie extensions of a number field, that are not necessarily commutative, has no non-zero pseudo-null submodule. We also study the structure of various arithmetic Iwasawa modules associated to such deformations.
Classification : 14H52, 11F80, 11R34
Keywords: elliptic curve, Galois representation, deformations, Galois cohomology, $p$-adic Lie extensions, Selmer groups
@article{DOCMA_2012__17__a12,
     author = {Shekhar, Sudhanshu and Sujatha, R.},
     title = {On the structure of {Selmer} groups of lambda-adic deformations over $p$-adic {Lie} extensions},
     journal = {Documenta mathematica},
     pages = {573--606},
     publisher = {mathdoc},
     volume = {17},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a12/}
}
TY  - JOUR
AU  - Shekhar, Sudhanshu
AU  - Sujatha, R.
TI  - On the structure of Selmer groups of lambda-adic deformations over $p$-adic Lie extensions
JO  - Documenta mathematica
PY  - 2012
SP  - 573
EP  - 606
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a12/
LA  - en
ID  - DOCMA_2012__17__a12
ER  - 
%0 Journal Article
%A Shekhar, Sudhanshu
%A Sujatha, R.
%T On the structure of Selmer groups of lambda-adic deformations over $p$-adic Lie extensions
%J Documenta mathematica
%D 2012
%P 573-606
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a12/
%G en
%F DOCMA_2012__17__a12
Shekhar, Sudhanshu; Sujatha, R. On the structure of Selmer groups of lambda-adic deformations over $p$-adic Lie extensions. Documenta mathematica, Tome 17 (2012), pp. 573-606. http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a12/