Moduli spaces of flat connections and Morita equivalence of quantum tori
Documenta mathematica, Tome 17 (2012), pp. 607-625.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study moduli spaces of flat connections on surfaces with boundary, with boundary conditions given by Lagrangian Lie subalgebras. The resulting symplectic manifolds are closely related with Poisson-Lie groups and their algebraic structure (such as symplectic groupoid structure) gets a geometrical explanation via 3-dimensional cobordisms. We give a formula for the symplectic form in terms of holonomies, based on a central extension of the gauge group by closed 2-forms. This construction is finally used for a certain extension of the Morita equivalence of quantum tori to the world of Poisson-Lie groups.
Classification : 53D30
@article{DOCMA_2012__17__a11,
     author = {Severa, Pavol},
     title = {Moduli spaces of flat connections and {Morita} equivalence of quantum tori},
     journal = {Documenta mathematica},
     pages = {607--625},
     publisher = {mathdoc},
     volume = {17},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a11/}
}
TY  - JOUR
AU  - Severa, Pavol
TI  - Moduli spaces of flat connections and Morita equivalence of quantum tori
JO  - Documenta mathematica
PY  - 2012
SP  - 607
EP  - 625
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a11/
LA  - en
ID  - DOCMA_2012__17__a11
ER  - 
%0 Journal Article
%A Severa, Pavol
%T Moduli spaces of flat connections and Morita equivalence of quantum tori
%J Documenta mathematica
%D 2012
%P 607-625
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a11/
%G en
%F DOCMA_2012__17__a11
Severa, Pavol. Moduli spaces of flat connections and Morita equivalence of quantum tori. Documenta mathematica, Tome 17 (2012), pp. 607-625. http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a11/