Duality for $\Bbb Z$-constructible sheaves on curves over finite fields
Documenta mathematica, Tome 17 (2012), pp. 989-1002.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove a duality theorem for Weil-etale cohomology of $\Z$-constructible sheaves on curves over finite fields.
Classification : 14F20, 14F42, 11G20
Keywords: finite fields, curves, duality, $\Z$-construcible sheaves
@article{DOCMA_2012__17__a1,
     author = {Geisser, Thomas},
     title = {Duality for $\Bbb Z$-constructible sheaves on curves over finite fields},
     journal = {Documenta mathematica},
     pages = {989--1002},
     publisher = {mathdoc},
     volume = {17},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a1/}
}
TY  - JOUR
AU  - Geisser, Thomas
TI  - Duality for $\Bbb Z$-constructible sheaves on curves over finite fields
JO  - Documenta mathematica
PY  - 2012
SP  - 989
EP  - 1002
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a1/
LA  - en
ID  - DOCMA_2012__17__a1
ER  - 
%0 Journal Article
%A Geisser, Thomas
%T Duality for $\Bbb Z$-constructible sheaves on curves over finite fields
%J Documenta mathematica
%D 2012
%P 989-1002
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a1/
%G en
%F DOCMA_2012__17__a1
Geisser, Thomas. Duality for $\Bbb Z$-constructible sheaves on curves over finite fields. Documenta mathematica, Tome 17 (2012), pp. 989-1002. http://geodesic.mathdoc.fr/item/DOCMA_2012__17__a1/