K-homology class of the Dirac operator on a compact quantum group
Documenta mathematica, Tome 16 (2011), pp. 767-780.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: By a result of Nagy, the C^*-algebra of continuous functions on the $q$-deformation $G_q$ of a simply connected semisimple compact Lie group $G$ is KK-equivalent to $C(G)$. We show that under this equivalence the K-homology class of the Dirac operator on $G_q$, which we constructed in an earlier paper, corresponds to that of the classical Dirac operator. Along the way we prove that for an appropriate choice of isomorphisms between completions of $U_q\g$ and $U\g$ a family of Drinfeld twists relating the deformed and classical coproducts can be chosen to be continuous in $q$.
Classification : 58B34, 58B32, 46L80
Keywords: quantum groups, Dirac operator, K-homology
@article{DOCMA_2011__16__a7,
     author = {Neshveyev, Sergey and Tuset, Lars},
     title = {K-homology class of the {Dirac} operator on a compact quantum group},
     journal = {Documenta mathematica},
     pages = {767--780},
     publisher = {mathdoc},
     volume = {16},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a7/}
}
TY  - JOUR
AU  - Neshveyev, Sergey
AU  - Tuset, Lars
TI  - K-homology class of the Dirac operator on a compact quantum group
JO  - Documenta mathematica
PY  - 2011
SP  - 767
EP  - 780
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a7/
LA  - en
ID  - DOCMA_2011__16__a7
ER  - 
%0 Journal Article
%A Neshveyev, Sergey
%A Tuset, Lars
%T K-homology class of the Dirac operator on a compact quantum group
%J Documenta mathematica
%D 2011
%P 767-780
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a7/
%G en
%F DOCMA_2011__16__a7
Neshveyev, Sergey; Tuset, Lars. K-homology class of the Dirac operator on a compact quantum group. Documenta mathematica, Tome 16 (2011), pp. 767-780. http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a7/