Dilation theory, commutant lifting and semicrossed products
Documenta mathematica, Tome 16 (2011), pp. 781-868.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We take a new look at dilation theory for nonself-adjoint operator algebras. Among the extremal (co)extensions of a representation, there is a special property of being fully extremal. This allows a refinement of some of the classical notions which are important when one moves away from standard examples. We show that many algebras including graph algebras and tensor algebras of C*-correspondences have the semi-Dirichlet property which collapses these notions and explains why they have a better dilation theory. This leads to variations of the notions of commutant lifting and Ando's theorem. This is applied to the study of semicrossed products by automorphisms, and endomorphisms which lift to the C*-envelope. In particular, we obtain several general theorems which allow one to conclude that semicrossed products of an operator algebra naturally imbed completely isometrically into the semicrossed product of its C*-envelope, and the C*-envelopes of these two algebras are the same.
Classification : 47L55, 47L40, 46L05, 37B20
Keywords: dilation, extremal coextension, semicrossed product, commutant lifting, Fuglede property, C*-envelopes, Ando's theorem
@article{DOCMA_2011__16__a6,
     author = {Davidson, K.R. and Katsoulis, E.G.},
     title = {Dilation theory, commutant lifting and semicrossed products},
     journal = {Documenta mathematica},
     pages = {781--868},
     publisher = {mathdoc},
     volume = {16},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a6/}
}
TY  - JOUR
AU  - Davidson, K.R.
AU  - Katsoulis, E.G.
TI  - Dilation theory, commutant lifting and semicrossed products
JO  - Documenta mathematica
PY  - 2011
SP  - 781
EP  - 868
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a6/
LA  - en
ID  - DOCMA_2011__16__a6
ER  - 
%0 Journal Article
%A Davidson, K.R.
%A Katsoulis, E.G.
%T Dilation theory, commutant lifting and semicrossed products
%J Documenta mathematica
%D 2011
%P 781-868
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a6/
%G en
%F DOCMA_2011__16__a6
Davidson, K.R.; Katsoulis, E.G. Dilation theory, commutant lifting and semicrossed products. Documenta mathematica, Tome 16 (2011), pp. 781-868. http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a6/