Change of Selmer group for big Galois representations and application to normalization
Documenta mathematica, Tome 16 (2011), pp. 885-899.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The goal of this note is to prove, under some assumptions, a formula relating the Selmer groups of isogenous Galois representations. Local and global Euler-Poincaré characteristic formulas are key tools in the proof. With additional hypotheses, we use the isogeny formula to study how the formation of Selmer groups interacts with normalization of the coefficient ring and discuss how a main conjecture for a big Galois representation over a non-normal ring follows from a corresponding conjecture over the normalization.
Classification : 11R23, 11R34
Keywords: Iwasawa theory, Selmer group, Galois cohomology
@article{DOCMA_2011__16__a4,
     author = {Arnold, Trevor and Koo, Koopa Tak-Lun},
     title = {Change of {Selmer} group for big {Galois} representations and application to normalization},
     journal = {Documenta mathematica},
     pages = {885--899},
     publisher = {mathdoc},
     volume = {16},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a4/}
}
TY  - JOUR
AU  - Arnold, Trevor
AU  - Koo, Koopa Tak-Lun
TI  - Change of Selmer group for big Galois representations and application to normalization
JO  - Documenta mathematica
PY  - 2011
SP  - 885
EP  - 899
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a4/
LA  - en
ID  - DOCMA_2011__16__a4
ER  - 
%0 Journal Article
%A Arnold, Trevor
%A Koo, Koopa Tak-Lun
%T Change of Selmer group for big Galois representations and application to normalization
%J Documenta mathematica
%D 2011
%P 885-899
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a4/
%G en
%F DOCMA_2011__16__a4
Arnold, Trevor; Koo, Koopa Tak-Lun. Change of Selmer group for big Galois representations and application to normalization. Documenta mathematica, Tome 16 (2011), pp. 885-899. http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a4/