Emerton's Jacquet functors for non-Borel parabolic subgroups
Documenta mathematica, Tome 16 (2011), pp. 1-31.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper studies Emerton's Jacquet module functor for locally analytic representations of $p$-adic reductive groups, introduced in citeemerton-jacquet. When $P$ is a parabolic subgroup whose Levi factor $M$ is not commutative, we show that passing to an isotypical subspace for the derived subgroup of $M$ gives rise to essentially admissible locally analytic representations of the torus $Z(M)$, which have a natural interpretation in terms of rigid geometry. We use this to extend the construction in of eigenvarieties in citeemerton-interpolation by constructing eigenvarieties interpolating automorphic representations whose local components at $p$ are not necessarily principal series.
Classification : 11F75, 22E50, 11F70
Keywords: eigenvarieties, $p$-adic automorphic forms, completed cohomology
@article{DOCMA_2011__16__a33,
     author = {Hill, Richard and Loeffler, David},
     title = {Emerton's {Jacquet} functors for {non-Borel} parabolic subgroups},
     journal = {Documenta mathematica},
     pages = {1--31},
     publisher = {mathdoc},
     volume = {16},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a33/}
}
TY  - JOUR
AU  - Hill, Richard
AU  - Loeffler, David
TI  - Emerton's Jacquet functors for non-Borel parabolic subgroups
JO  - Documenta mathematica
PY  - 2011
SP  - 1
EP  - 31
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a33/
LA  - en
ID  - DOCMA_2011__16__a33
ER  - 
%0 Journal Article
%A Hill, Richard
%A Loeffler, David
%T Emerton's Jacquet functors for non-Borel parabolic subgroups
%J Documenta mathematica
%D 2011
%P 1-31
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a33/
%G en
%F DOCMA_2011__16__a33
Hill, Richard; Loeffler, David. Emerton's Jacquet functors for non-Borel parabolic subgroups. Documenta mathematica, Tome 16 (2011), pp. 1-31. http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a33/