Multigraded factorial rings and Fano varieties with torus action
Documenta mathematica, Tome 16 (2011), pp. 71-109.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In a first result, we describe all finitely generated factorial algebras over an algebraically closed field of characteristic zero that come with an effective multigrading of complexity one by means of generators and relations. This enables us to construct systematically varieties with free divisor class group and a complexity one torus action via their Cox rings. For the Fano varieties of this type that have a free divisor class group of rank one, we provide explicit bounds for the number of possible deformation types depending on the dimension and the index of the Picard group in the divisor class group. As a consequence, one can produce classification lists for fixed dimension and Picard index. We carry this out expemplarily in the following cases. There are 15 non-toric surfaces with Picard index at most six. Moreover, there are 116 non-toric threefolds with Picard index at most two; nine of them are locally factorial, i.e. of Picard index one, and among these one is smooth, six have canonical singularities and two have non-canonical singularities. Finally, there are 67 non-toric locally factorial fourfolds and two one-dimensional families of non-toric locally factorial fourfolds. In all cases, we list the Cox rings explicitly.
Classification : 13A02, 13F15, 14J45
Keywords: multigraded factorial ring, Fano variety, torus action
@article{DOCMA_2011__16__a31,
     author = {Hausen, J\"urgen and Herppich, Elaine and S\"uss, Hendrik},
     title = {Multigraded factorial rings and {Fano} varieties with torus action},
     journal = {Documenta mathematica},
     pages = {71--109},
     publisher = {mathdoc},
     volume = {16},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a31/}
}
TY  - JOUR
AU  - Hausen, Jürgen
AU  - Herppich, Elaine
AU  - Süss, Hendrik
TI  - Multigraded factorial rings and Fano varieties with torus action
JO  - Documenta mathematica
PY  - 2011
SP  - 71
EP  - 109
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a31/
LA  - en
ID  - DOCMA_2011__16__a31
ER  - 
%0 Journal Article
%A Hausen, Jürgen
%A Herppich, Elaine
%A Süss, Hendrik
%T Multigraded factorial rings and Fano varieties with torus action
%J Documenta mathematica
%D 2011
%P 71-109
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a31/
%G en
%F DOCMA_2011__16__a31
Hausen, Jürgen; Herppich, Elaine; Süss, Hendrik. Multigraded factorial rings and Fano varieties with torus action. Documenta mathematica, Tome 16 (2011), pp. 71-109. http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a31/