Algebraic zip data
Documenta mathematica, Tome 16 (2011), pp. 253-300.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: An algebraic zip datum is a tuple $\CZ = (G,P,Q,\varphi)$ consisting of a reductive group $G$ together with parabolic subgroups $P$ and $Q$ and an isogeny $\varphi\colon P/R_uP\to Q/R_uQ$. We study the action of the group $E_\CZ := \bigl{ (p,q)\in P{\times}Q \bigm| \varphi(\pi_{P}(p)) =\pi_Q(q)\bigr}$ on $G$ given by $((p,q),g)\mapsto pgq^{-1}$. We define certain smooth $E_\CZ$-invariant subvarieties of $G$, show that they define a stratification of $G$. We determine their dimensions and their closures and give a description of the stabilizers of the $E_\CZ$-action on $G$. We also generalize all results to non-connected groups. We show that for special choices of $\CZ$ the algebraic quotient stack $[E_\CZ \ G]$ is isomorphic to $[G \Z]$ or to $[G \Z']$, where $Z$ is a $G$-variety studied by Lusztig and He in the theory of character sheaves on spherical compactifications of $G$ and where $Z'$ has been defined by Moonen and the second author in their classification of $F$-zips. In these cases the $E_\CZ$-invariant subvarieties correspond to the so-called «$G$-stable pieces» of $Z$ defined by Lusztig (resp. the $G$-orbits of $Z'$).
Classification : 14L30, 20G15, 20F55, 20G40
Keywords: generalized $G$-stable pieces, zip data, $F$-zips
@article{DOCMA_2011__16__a26,
     author = {Pink, Richard and Wedhorn, Torsten and Ziegler, Paul},
     title = {Algebraic zip data},
     journal = {Documenta mathematica},
     pages = {253--300},
     publisher = {mathdoc},
     volume = {16},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a26/}
}
TY  - JOUR
AU  - Pink, Richard
AU  - Wedhorn, Torsten
AU  - Ziegler, Paul
TI  - Algebraic zip data
JO  - Documenta mathematica
PY  - 2011
SP  - 253
EP  - 300
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a26/
LA  - en
ID  - DOCMA_2011__16__a26
ER  - 
%0 Journal Article
%A Pink, Richard
%A Wedhorn, Torsten
%A Ziegler, Paul
%T Algebraic zip data
%J Documenta mathematica
%D 2011
%P 253-300
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a26/
%G en
%F DOCMA_2011__16__a26
Pink, Richard; Wedhorn, Torsten; Ziegler, Paul. Algebraic zip data. Documenta mathematica, Tome 16 (2011), pp. 253-300. http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a26/