Modules homotopiques
Documenta mathematica, Tome 16 (2011), pp. 411-455.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Based on previous works, we compare over a perfect field $k$ the category of homotopy invariant sheaves with transfers introduced by V. Voevodsky and the category of cycle modules introduced by M. Rost: the former is a full subcategory of the latter. Using the recent construction by D.C. Cisinski and the author of a non effective version $DM(k)$ of the category of motivic complexes, we show that cycle modules form the heart of a natural t-structure on $DM(k)$, generalizing the homotopy t-structure on motivic complexes.
Classification : 14F42, 14C15, 14C35
Keywords: motifs mixtes, complexes motiviques, modules de cycles, filtration par coniveau
@article{DOCMA_2011__16__a21,
     author = {D\'eglise, F.},
     title = {Modules homotopiques},
     journal = {Documenta mathematica},
     pages = {411--455},
     publisher = {mathdoc},
     volume = {16},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a21/}
}
TY  - JOUR
AU  - Déglise, F.
TI  - Modules homotopiques
JO  - Documenta mathematica
PY  - 2011
SP  - 411
EP  - 455
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a21/
LA  - en
ID  - DOCMA_2011__16__a21
ER  - 
%0 Journal Article
%A Déglise, F.
%T Modules homotopiques
%J Documenta mathematica
%D 2011
%P 411-455
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a21/
%G en
%F DOCMA_2011__16__a21
Déglise, F. Modules homotopiques. Documenta mathematica, Tome 16 (2011), pp. 411-455. http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a21/