Characterizing weak-operator continuous linear functionals on $B(H)$ constructively
Documenta mathematica, Tome 16 (2011), pp. 597-617.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $B(H)$ be the space of bounded operators on a not-necessarily-separable Hilbert space $H$. Working within Bishop-style constructive analysis, we prove that certain weak-operator continuous linear functionals on $B(H)$ are finite sums of functionals of the form $T\rightsquigarrowleftlangle Tx,y\right\rangle $. We also prove that the identification of weak- and strong-operator continuous linear functionals on $B(H)$ cannot be established constructively.
Classification : 03F60, 47L50, 46S30
Keywords: constructive, operators, (ultra)weak operator topology, continuous functionals
@article{DOCMA_2011__16__a14,
     author = {Bridges, Douglas S.},
     title = {Characterizing weak-operator continuous linear functionals on $B(H)$ constructively},
     journal = {Documenta mathematica},
     pages = {597--617},
     publisher = {mathdoc},
     volume = {16},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a14/}
}
TY  - JOUR
AU  - Bridges, Douglas S.
TI  - Characterizing weak-operator continuous linear functionals on $B(H)$ constructively
JO  - Documenta mathematica
PY  - 2011
SP  - 597
EP  - 617
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a14/
LA  - en
ID  - DOCMA_2011__16__a14
ER  - 
%0 Journal Article
%A Bridges, Douglas S.
%T Characterizing weak-operator continuous linear functionals on $B(H)$ constructively
%J Documenta mathematica
%D 2011
%P 597-617
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a14/
%G en
%F DOCMA_2011__16__a14
Bridges, Douglas S. Characterizing weak-operator continuous linear functionals on $B(H)$ constructively. Documenta mathematica, Tome 16 (2011), pp. 597-617. http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a14/