Ordinarity of configuration spaces and of wonderful compactifications
Documenta mathematica, Tome 16 (2011), pp. 669-676.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove the following: (1) if $X$ is ordinary, the Fulton-MacPherson configuration space $X[n]$ is ordinary for all $n$; (2) the moduli of stable $n$-pointed curves of genus zero is ordinary. (3) More generally we show that a wonderful compactification $X_\sg$ is ordinary if and only if $(X,\sg)$ is an ordinary building set. This implies the ordinarity of many other well-known configuration spaces (under suitable assumptions).
Classification : 14G17, 14J99
Keywords: ordinary varieties, ordinarity, configuration spaces, wonderful compactification, moduli of n-pointed, stable curves of genus zero
@article{DOCMA_2011__16__a11,
     author = {Joshi, Kirti},
     title = {Ordinarity of configuration spaces and of wonderful compactifications},
     journal = {Documenta mathematica},
     pages = {669--676},
     publisher = {mathdoc},
     volume = {16},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a11/}
}
TY  - JOUR
AU  - Joshi, Kirti
TI  - Ordinarity of configuration spaces and of wonderful compactifications
JO  - Documenta mathematica
PY  - 2011
SP  - 669
EP  - 676
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a11/
LA  - en
ID  - DOCMA_2011__16__a11
ER  - 
%0 Journal Article
%A Joshi, Kirti
%T Ordinarity of configuration spaces and of wonderful compactifications
%J Documenta mathematica
%D 2011
%P 669-676
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a11/
%G en
%F DOCMA_2011__16__a11
Joshi, Kirti. Ordinarity of configuration spaces and of wonderful compactifications. Documenta mathematica, Tome 16 (2011), pp. 669-676. http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a11/