On families of weakly admissible filtered phi-modules and the adjoint quotient of ${GL}_d$
Documenta mathematica, Tome 16 (2011), pp. 969-991.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the relation of the notion of weak admissibility in families of filtered $\phi$-modules, as considered in [He], with the adjoint quotient. We show that the weakly admissible subset is an open subvariety in the fibers over the adjoint quotient. Further we determine the image of the weakly admissible set in the adjoint quotient generalizing earlier work of Breuil and Schneider.
Classification : 11F80, 11F85, 14G20, 14G22
Keywords: filtered $\phi$-modules, $p$-adic Hodge theory, rigid geometry
@article{DOCMA_2011__16__a0,
     author = {Hellmann, Eugen},
     title = {On families of weakly admissible filtered phi-modules and the adjoint quotient of ${GL}_d$},
     journal = {Documenta mathematica},
     pages = {969--991},
     publisher = {mathdoc},
     volume = {16},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a0/}
}
TY  - JOUR
AU  - Hellmann, Eugen
TI  - On families of weakly admissible filtered phi-modules and the adjoint quotient of ${GL}_d$
JO  - Documenta mathematica
PY  - 2011
SP  - 969
EP  - 991
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a0/
LA  - en
ID  - DOCMA_2011__16__a0
ER  - 
%0 Journal Article
%A Hellmann, Eugen
%T On families of weakly admissible filtered phi-modules and the adjoint quotient of ${GL}_d$
%J Documenta mathematica
%D 2011
%P 969-991
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a0/
%G en
%F DOCMA_2011__16__a0
Hellmann, Eugen. On families of weakly admissible filtered phi-modules and the adjoint quotient of ${GL}_d$. Documenta mathematica, Tome 16 (2011), pp. 969-991. http://geodesic.mathdoc.fr/item/DOCMA_2011__16__a0/