Rationality of integral cycles
Documenta mathematica, Andrei A. Suslin's Sixtieth Birthday (2010), pp. 661-670.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this article we provide the sufficient condition for a Chow group element to be defined over the ground field. This is an integral version of the result known for $\Bbb Z/2$-coefficients. We also show that modulo 2 and degree $r$ cohomological invariants of algebraic varieties can not affect rationality of cycles of codimensions up to $2^{r-1}-2$.
Classification : 14C15, 11E04, 14C25, 19D45, 55S25
Keywords: quadric, function field of a quadric, Chow group, algebraic cobordism, symmetric operation, Landweber-Novikov operation, rationality
@article{DOCMA_2010__S4__a2,
     author = {Vishik, Alexander},
     title = {Rationality of integral cycles},
     journal = {Documenta mathematica},
     pages = {661--670},
     publisher = {mathdoc},
     volume = {Andrei A. Suslin's Sixtieth Birthday},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2010__S4__a2/}
}
TY  - JOUR
AU  - Vishik, Alexander
TI  - Rationality of integral cycles
JO  - Documenta mathematica
PY  - 2010
SP  - 661
EP  - 670
VL  - Andrei A. Suslin's Sixtieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2010__S4__a2/
LA  - en
ID  - DOCMA_2010__S4__a2
ER  - 
%0 Journal Article
%A Vishik, Alexander
%T Rationality of integral cycles
%J Documenta mathematica
%D 2010
%P 661-670
%V Andrei A. Suslin's Sixtieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2010__S4__a2/
%G en
%F DOCMA_2010__S4__a2
Vishik, Alexander. Rationality of integral cycles. Documenta mathematica, Andrei A. Suslin's Sixtieth Birthday (2010), pp. 661-670. http://geodesic.mathdoc.fr/item/DOCMA_2010__S4__a2/