Power reductivity over an arbitrary base.
Documenta mathematica, Andrei A. Suslin's Sixtieth Birthday (2010), pp. 171-195.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Our starting point is Mumford's conjecture, on representations of Chevalley groups over fields, as it is phrased in the preface of Geometric Invariant Theory. After extending the conjecture appropriately, we show that it holds over an arbitrary commutative base ring. We thus obtain the first fundamental theorem of invariant theory (often referred to as Hilbert's fourteenth problem) over an arbitrary Noetherian ring. We also prove results on the Grosshans graded deformation of an algebra in the same generality. We end with tentative finiteness results for rational cohomology over the integers.
Classification : 20G35, 14L24, 20G05, 20G10
Keywords: Chevalley groups, 14th Hilbert problem, cohomology, geometric reductivity
@article{DOCMA_2010__S4__a16,
     author = {Franjou, Vincent and van der Kallen, Wilberd},
     title = {Power reductivity over an arbitrary base.},
     journal = {Documenta mathematica},
     pages = {171--195},
     publisher = {mathdoc},
     volume = {Andrei A. Suslin's Sixtieth Birthday},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2010__S4__a16/}
}
TY  - JOUR
AU  - Franjou, Vincent
AU  - van der Kallen, Wilberd
TI  - Power reductivity over an arbitrary base.
JO  - Documenta mathematica
PY  - 2010
SP  - 171
EP  - 195
VL  - Andrei A. Suslin's Sixtieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2010__S4__a16/
LA  - en
ID  - DOCMA_2010__S4__a16
ER  - 
%0 Journal Article
%A Franjou, Vincent
%A van der Kallen, Wilberd
%T Power reductivity over an arbitrary base.
%J Documenta mathematica
%D 2010
%P 171-195
%V Andrei A. Suslin's Sixtieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2010__S4__a16/
%G en
%F DOCMA_2010__S4__a16
Franjou, Vincent; van der Kallen, Wilberd. Power reductivity over an arbitrary base.. Documenta mathematica, Andrei A. Suslin's Sixtieth Birthday (2010), pp. 171-195. http://geodesic.mathdoc.fr/item/DOCMA_2010__S4__a16/