Cancellation theorem
Documenta mathematica, Andrei A. Suslin's Sixtieth Birthday (2010), pp. 671-685.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We give a direct proof of the fact that for any schemes of finite type $X, Y$ over a Noetherian scheme $S$ the natural map of presheaves with transfers $$\underline{Hom}({\bold Z}_{tr}(X),{\bold Z}_{tr}(Y))\rightarrow \underline{Hom}({\bold Z}_{tr}(X)\otimes_{tr}{\bold G}_m,{\bold Z}_{tr}(Y)\otimes_{tr}{\bold G}_m)$$ is a (weak) ${\bold A}^1$-homotopy equivalence. As a corollary we deduce that the Tate motive is quasi-invertible in the triangulated categories of motives over perfect fields.
Classification : 14F42, 19E15
@article{DOCMA_2010__S4__a1,
     author = {Voevodsky, Vladimir},
     title = {Cancellation theorem},
     journal = {Documenta mathematica},
     pages = {671--685},
     publisher = {mathdoc},
     volume = {Andrei A. Suslin's Sixtieth Birthday},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2010__S4__a1/}
}
TY  - JOUR
AU  - Voevodsky, Vladimir
TI  - Cancellation theorem
JO  - Documenta mathematica
PY  - 2010
SP  - 671
EP  - 685
VL  - Andrei A. Suslin's Sixtieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2010__S4__a1/
LA  - en
ID  - DOCMA_2010__S4__a1
ER  - 
%0 Journal Article
%A Voevodsky, Vladimir
%T Cancellation theorem
%J Documenta mathematica
%D 2010
%P 671-685
%V Andrei A. Suslin's Sixtieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2010__S4__a1/
%G en
%F DOCMA_2010__S4__a1
Voevodsky, Vladimir. Cancellation theorem. Documenta mathematica, Andrei A. Suslin's Sixtieth Birthday (2010), pp. 671-685. http://geodesic.mathdoc.fr/item/DOCMA_2010__S4__a1/