On proper R-actions on hyperbolic Stein surfaces
Documenta mathematica, Tome 14 (2009), pp. 673-689.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we investigate proper $\mbb{R}$--actions on hyperbolic Stein surfaces and prove in particular the following result: Let $D\subset\mbb{C}^2$ be a simply-connected bounded domain of holomorphy which admits a proper $\mbb{R}$--action by holomorphic transformations. The quotient $D/\mbb{Z}$ with respect to the induced proper $\mbb{Z}$--action is a Stein manifold. A normal form for the domain $D$ is deduced.
Classification : 32E10, 32M05, 32Q45, 32T05
Keywords: Stein manifolds, bounded domains of holomorphy, proper actions, quotient by a discrete group
@article{DOCMA_2009__14__a5,
     author = {Miebach, Christian and Oeljeklaus, Karl},
     title = {On proper {R-actions} on hyperbolic {Stein} surfaces},
     journal = {Documenta mathematica},
     pages = {673--689},
     publisher = {mathdoc},
     volume = {14},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a5/}
}
TY  - JOUR
AU  - Miebach, Christian
AU  - Oeljeklaus, Karl
TI  - On proper R-actions on hyperbolic Stein surfaces
JO  - Documenta mathematica
PY  - 2009
SP  - 673
EP  - 689
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a5/
LA  - en
ID  - DOCMA_2009__14__a5
ER  - 
%0 Journal Article
%A Miebach, Christian
%A Oeljeklaus, Karl
%T On proper R-actions on hyperbolic Stein surfaces
%J Documenta mathematica
%D 2009
%P 673-689
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a5/
%G en
%F DOCMA_2009__14__a5
Miebach, Christian; Oeljeklaus, Karl. On proper R-actions on hyperbolic Stein surfaces. Documenta mathematica, Tome 14 (2009), pp. 673-689. http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a5/