Hecke operators on quasimaps into horospherical varieties
Documenta mathematica, Tome 14 (2009), pp. 19-46.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G$ be a connected reductive complex algebraic group. This paper and its companion citeGNcombo06 are devoted to the space $Z$ of meromorphic quasimaps from a curve into an affine spherical $G$-variety $X$. The space $Z$ may be thought of as an algebraic model for the loop space of $X$. The theory we develop associates to $X$ a connected reductive complex algebraic subgroup $\check H$ of the dual group $\check G$. The construction of $\check H$ is via Tannakian formalism: we identify a certain tensor category $\catq(Z)$ of perverse sheaves on $Z$ with the category of finite-dimensional representations of $\check H$. In this paper, we focus on horospherical varieties, a class of varieties closely related to flag varieties. For an affine horospherical $G$-variety $X_{\on{horo}}$, the category $\catq(Z_{\on{horo}})$ is equivalent to a category of vector spaces graded by a lattice. Thus the associated subgroup $\check H_{\on{horo}}$ is a torus. The case of horospherical varieties may be thought of as a simple example, but it also plays a central role in the general theory. To an arbitrary affine spherical $G$-variety $X$, one may associate a horospherical variety $X_{\on{horo}}$. Its associated subgroup $\check H_{\on{horo}}$ turns out to be a maximal torus in the subgroup $\check H$ associated to $X$.
Classification : 22E67, 14M17
Keywords: loop spaces, spherical varieties, Langlands duality
@article{DOCMA_2009__14__a26,
     author = {Gaitsgory, Dennis and Nadler, David},
     title = {Hecke operators on quasimaps into horospherical varieties},
     journal = {Documenta mathematica},
     pages = {19--46},
     publisher = {mathdoc},
     volume = {14},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a26/}
}
TY  - JOUR
AU  - Gaitsgory, Dennis
AU  - Nadler, David
TI  - Hecke operators on quasimaps into horospherical varieties
JO  - Documenta mathematica
PY  - 2009
SP  - 19
EP  - 46
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a26/
LA  - en
ID  - DOCMA_2009__14__a26
ER  - 
%0 Journal Article
%A Gaitsgory, Dennis
%A Nadler, David
%T Hecke operators on quasimaps into horospherical varieties
%J Documenta mathematica
%D 2009
%P 19-46
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a26/
%G en
%F DOCMA_2009__14__a26
Gaitsgory, Dennis; Nadler, David. Hecke operators on quasimaps into horospherical varieties. Documenta mathematica, Tome 14 (2009), pp. 19-46. http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a26/