Rationally connected foliations on surfaces
Documenta mathematica, Tome 14 (2009), pp. 157-165.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this short note we study foliations on surfaces with rationally connected leaves. Our main result is that on a surface there exists a polarisation such that the Harder-Narasimhan filtration of the tangent bundle with respect to this polarisation yields the maximal rationally connected quotient of the surface.
Classification : 14J26, 37F75
@article{DOCMA_2009__14__a22,
     author = {Neumann, Sebastian},
     title = {Rationally connected foliations on surfaces},
     journal = {Documenta mathematica},
     pages = {157--165},
     publisher = {mathdoc},
     volume = {14},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a22/}
}
TY  - JOUR
AU  - Neumann, Sebastian
TI  - Rationally connected foliations on surfaces
JO  - Documenta mathematica
PY  - 2009
SP  - 157
EP  - 165
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a22/
LA  - en
ID  - DOCMA_2009__14__a22
ER  - 
%0 Journal Article
%A Neumann, Sebastian
%T Rationally connected foliations on surfaces
%J Documenta mathematica
%D 2009
%P 157-165
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a22/
%G en
%F DOCMA_2009__14__a22
Neumann, Sebastian. Rationally connected foliations on surfaces. Documenta mathematica, Tome 14 (2009), pp. 157-165. http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a22/