A note on the $p$-adic Galois representations attached to Hilbert modular forms
Documenta mathematica, Tome 14 (2009), pp. 241-258.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that the $p$-adic Galois representations attached to Hilbert modular forms of motivic weight are potentially semistable at all places above $p$ and are compatible with the local Langlands correspondence at these places, proving this for those forms not covered by the previous works of T. Saito and of D. Blasius and J. Rogawski.
Classification : 11F80, 11F41
@article{DOCMA_2009__14__a18,
     author = {Skinner, Christopher},
     title = {A note on the $p$-adic {Galois} representations attached to {Hilbert} modular forms},
     journal = {Documenta mathematica},
     pages = {241--258},
     publisher = {mathdoc},
     volume = {14},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a18/}
}
TY  - JOUR
AU  - Skinner, Christopher
TI  - A note on the $p$-adic Galois representations attached to Hilbert modular forms
JO  - Documenta mathematica
PY  - 2009
SP  - 241
EP  - 258
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a18/
LA  - en
ID  - DOCMA_2009__14__a18
ER  - 
%0 Journal Article
%A Skinner, Christopher
%T A note on the $p$-adic Galois representations attached to Hilbert modular forms
%J Documenta mathematica
%D 2009
%P 241-258
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a18/
%G en
%F DOCMA_2009__14__a18
Skinner, Christopher. A note on the $p$-adic Galois representations attached to Hilbert modular forms. Documenta mathematica, Tome 14 (2009), pp. 241-258. http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a18/