Equivariant counts of points of the moduli spaces of pointed hyperelliptic curves
Documenta mathematica, Tome 14 (2009), pp. 259-296.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the moduli space $\Hh_{g,n}$ of $n$-pointed smooth hyperelliptic curves of genus $g$. In order to get cohomological information we wish to make $\s_n$-equivariant counts of the numbers of points defined over finite fields of this moduli space. We find recurrence relations in the genus that these numbers fulfill. Thus, if we can make $\s_n$-equivariant counts of $\Hh_{g,n}$ for low genus, then we can do this for every genus. Information about curves of genus 0 and 1 is then found to be sufficient to compute the answers for $\Hh_{g,n}$ for all $g$ and for $n leq 7$. These results are applied to the moduli spaces of stable curves of genus 2 with up to 7 points, and this gives us the $\s_n$-equivariant Galois (resp. Hodge) structure of their $\ell$-adic (resp. Betti) cohomology.
Classification : 14H10, 11G20
Keywords: cohomology of moduli spaces of curves, curves over finite fields
@article{DOCMA_2009__14__a17,
     author = {Bergstr\"om, Jonas},
     title = {Equivariant counts of points of the moduli spaces of pointed hyperelliptic curves},
     journal = {Documenta mathematica},
     pages = {259--296},
     publisher = {mathdoc},
     volume = {14},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a17/}
}
TY  - JOUR
AU  - Bergström, Jonas
TI  - Equivariant counts of points of the moduli spaces of pointed hyperelliptic curves
JO  - Documenta mathematica
PY  - 2009
SP  - 259
EP  - 296
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a17/
LA  - en
ID  - DOCMA_2009__14__a17
ER  - 
%0 Journal Article
%A Bergström, Jonas
%T Equivariant counts of points of the moduli spaces of pointed hyperelliptic curves
%J Documenta mathematica
%D 2009
%P 259-296
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a17/
%G en
%F DOCMA_2009__14__a17
Bergström, Jonas. Equivariant counts of points of the moduli spaces of pointed hyperelliptic curves. Documenta mathematica, Tome 14 (2009), pp. 259-296. http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a17/