On the motivic spectra representing algebraic cobordism and algebraic $K$-theory
Documenta mathematica, Tome 14 (2009), pp. 359-396.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that the motivic spectrum representing algebraic $K$-theory is a localization of the suspension spectrum of $\mathbb{P}^\infty$, and similarly that the motivic spectrum representing periodic algebraic cobordism is a localization of the suspension spectrum of $BGL$. In particular, working over $\mathbb{C}$ and passing to spaces of $\mathbb{C}$-valued points, we obtain new proofs of the topological versions of these theorems, originally due to the second author. We conclude with a couple of applications: first, we give a short proof of the motivic Conner-Floyd theorem, and second, we show that algebraic $K$-theory and periodic algebraic cobordism are $E_\infty$ motivic spectra.
Classification : 55N15, 55N22
@article{DOCMA_2009__14__a14,
     author = {Gepner, David and Snaith, Victor},
     title = {On the motivic spectra representing algebraic cobordism and algebraic $K$-theory},
     journal = {Documenta mathematica},
     pages = {359--396},
     publisher = {mathdoc},
     volume = {14},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a14/}
}
TY  - JOUR
AU  - Gepner, David
AU  - Snaith, Victor
TI  - On the motivic spectra representing algebraic cobordism and algebraic $K$-theory
JO  - Documenta mathematica
PY  - 2009
SP  - 359
EP  - 396
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a14/
LA  - en
ID  - DOCMA_2009__14__a14
ER  - 
%0 Journal Article
%A Gepner, David
%A Snaith, Victor
%T On the motivic spectra representing algebraic cobordism and algebraic $K$-theory
%J Documenta mathematica
%D 2009
%P 359-396
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a14/
%G en
%F DOCMA_2009__14__a14
Gepner, David; Snaith, Victor. On the motivic spectra representing algebraic cobordism and algebraic $K$-theory. Documenta mathematica, Tome 14 (2009), pp. 359-396. http://geodesic.mathdoc.fr/item/DOCMA_2009__14__a14/