Hirzebruch-Mumford proportionality and locally symmetric varieties of orthogonal type
Documenta mathematica, Tome 13 (2008), pp. 1-19.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: $\noindent $For many classical moduli spaces of orthogonal type there are results about the Kodaira dimension. But nothing is known in the case of dimension greater than $19$. In this paper we obtain the first results in this direction. In particular the modular variety defined by the orthogonal group of the even unimodular lattice of signature $(2,8m+2)$ is of general type if $m\ge 5$.
Classification : 14J15, 11F55
Keywords: locally symmetric variety, modular form, Hirzebruch-Mumford proportionality
@article{DOCMA_2008__13__a23,
     author = {Gritsenko, V. and Hulek, K. and Sankaran, G.K.},
     title = {Hirzebruch-Mumford proportionality and locally symmetric varieties of orthogonal type},
     journal = {Documenta mathematica},
     pages = {1--19},
     publisher = {mathdoc},
     volume = {13},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a23/}
}
TY  - JOUR
AU  - Gritsenko, V.
AU  - Hulek, K.
AU  - Sankaran, G.K.
TI  - Hirzebruch-Mumford proportionality and locally symmetric varieties of orthogonal type
JO  - Documenta mathematica
PY  - 2008
SP  - 1
EP  - 19
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a23/
LA  - en
ID  - DOCMA_2008__13__a23
ER  - 
%0 Journal Article
%A Gritsenko, V.
%A Hulek, K.
%A Sankaran, G.K.
%T Hirzebruch-Mumford proportionality and locally symmetric varieties of orthogonal type
%J Documenta mathematica
%D 2008
%P 1-19
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a23/
%G en
%F DOCMA_2008__13__a23
Gritsenko, V.; Hulek, K.; Sankaran, G.K. Hirzebruch-Mumford proportionality and locally symmetric varieties of orthogonal type. Documenta mathematica, Tome 13 (2008), pp. 1-19. http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a23/