The Euler characteristic of a category
Documenta mathematica, Tome 13 (2008), pp. 21-49.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Euler characteristic of a finite category is defined and shown to be compatible with Euler characteristics of other types of object, including orbifolds. A formula is proved for the cardinality of a colimit of sets, generalizing the classical inclusion-exclusion formula. Both rest on a generalization of Rota's Möbius inversion from posets to categories.
Classification : 18F99, 55U99, 05C50, 57N65
Keywords: Euler characteristic, finite category, inclusion-exclusion, Möbius inversion, cardinality of colimit
@article{DOCMA_2008__13__a22,
     author = {Leinster, Tom},
     title = {The {Euler} characteristic of a category},
     journal = {Documenta mathematica},
     pages = {21--49},
     publisher = {mathdoc},
     volume = {13},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a22/}
}
TY  - JOUR
AU  - Leinster, Tom
TI  - The Euler characteristic of a category
JO  - Documenta mathematica
PY  - 2008
SP  - 21
EP  - 49
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a22/
LA  - en
ID  - DOCMA_2008__13__a22
ER  - 
%0 Journal Article
%A Leinster, Tom
%T The Euler characteristic of a category
%J Documenta mathematica
%D 2008
%P 21-49
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a22/
%G en
%F DOCMA_2008__13__a22
Leinster, Tom. The Euler characteristic of a category. Documenta mathematica, Tome 13 (2008), pp. 21-49. http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a22/