Motivic splitting lemma
Documenta mathematica, Tome 13 (2008), pp. 81-96.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $M$ be a Chow motive over a field $F$. Let $X$ be a smooth projective variety over $F$ and $N$ be a direct summand of the motive of $X$. Assume that over the generic point of $X$ the motives $M$ and $N$ become isomorphic to a direct sum of twisted Tate motives. The main result of the paper says that if a morphism $f: M \to N$ splits over the generic point of $X$ then it splits over $F$, i.e., $N$ is a direct summand of $M$. We apply this result to various examples of motives of projective homogeneous varieties.
Keywords: Chow motive, homogeneous variety
@article{DOCMA_2008__13__a20,
     author = {Vishik, A. and Zainoulline, K.},
     title = {Motivic splitting lemma},
     journal = {Documenta mathematica},
     pages = {81--96},
     publisher = {mathdoc},
     volume = {13},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a20/}
}
TY  - JOUR
AU  - Vishik, A.
AU  - Zainoulline, K.
TI  - Motivic splitting lemma
JO  - Documenta mathematica
PY  - 2008
SP  - 81
EP  - 96
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a20/
LA  - en
ID  - DOCMA_2008__13__a20
ER  - 
%0 Journal Article
%A Vishik, A.
%A Zainoulline, K.
%T Motivic splitting lemma
%J Documenta mathematica
%D 2008
%P 81-96
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a20/
%G en
%F DOCMA_2008__13__a20
Vishik, A.; Zainoulline, K. Motivic splitting lemma. Documenta mathematica, Tome 13 (2008), pp. 81-96. http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a20/