Divisibility of the Dirac magnetic monopole as a two-vector bundle over the three-sphere
Documenta mathematica, Tome 13 (2008), pp. 795-801.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that when the gerbe $\mu$ representing a magnetic monopole is viewed as a virtual 2-vector bundle, then it decomposes, modulo torsion, as two times a virtual 2-vector bundle $\varsigma$. We therefore interpret $\varsigma$ as representing half a magnetic monopole, or a semipole.
Classification : 19D50, 55P43, 81S10, 81T40
Keywords: magnetic monopole, gerbe, two-vector bundle, higher algebraic $K$-theory, topological Hochschild homology
@article{DOCMA_2008__13__a2,
     author = {Ausoni, Christian and Dundas, Bj{\o}rn Ian and Rognes, John},
     title = {Divisibility of the {Dirac} magnetic monopole as a two-vector bundle over the three-sphere},
     journal = {Documenta mathematica},
     pages = {795--801},
     publisher = {mathdoc},
     volume = {13},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a2/}
}
TY  - JOUR
AU  - Ausoni, Christian
AU  - Dundas, Bjørn Ian
AU  - Rognes, John
TI  - Divisibility of the Dirac magnetic monopole as a two-vector bundle over the three-sphere
JO  - Documenta mathematica
PY  - 2008
SP  - 795
EP  - 801
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a2/
LA  - en
ID  - DOCMA_2008__13__a2
ER  - 
%0 Journal Article
%A Ausoni, Christian
%A Dundas, Bjørn Ian
%A Rognes, John
%T Divisibility of the Dirac magnetic monopole as a two-vector bundle over the three-sphere
%J Documenta mathematica
%D 2008
%P 795-801
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a2/
%G en
%F DOCMA_2008__13__a2
Ausoni, Christian; Dundas, Bjørn Ian; Rognes, John. Divisibility of the Dirac magnetic monopole as a two-vector bundle over the three-sphere. Documenta mathematica, Tome 13 (2008), pp. 795-801. http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a2/