$C^*$-algebras associated to coverings of $k$-graphs
Documenta mathematica, Tome 13 (2008), pp. 161-205.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A covering of $k$-graphs (in the sense of Pask-Quigg-Raeburn) induces an embedding of universal $C^*$-algebras. We show how to build a $(k+1)$-graph whose universal algebra encodes this embedding. More generally we show how to realise a direct limit of $k$-graph algebras under embeddings induced from coverings as the universal algebra of a $(k+1)$-graph. Our main focus is on computing the $K$-theory of the $(k+1)$-graph algebra from that of the component $k$-graph algebras. Examples of our construction include a realisation of the Kirchberg algebra $\mathcal{P}_n$ whose $K$-theory is opposite to that of $\mathcal{O}_n$, and a class of A$\TT$-algebras that can naturally be regarded as higher-rank Bunce-Deddens algebras.
Classification : 46L05
Keywords: graph algebra, $k$-graph, covering, $K$-theory, $C^*$-algebra
@article{DOCMA_2008__13__a15,
     author = {Kumjian, Alex and Pask, David and Sims, Aidan},
     title = {$C^*$-algebras associated to coverings of $k$-graphs},
     journal = {Documenta mathematica},
     pages = {161--205},
     publisher = {mathdoc},
     volume = {13},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a15/}
}
TY  - JOUR
AU  - Kumjian, Alex
AU  - Pask, David
AU  - Sims, Aidan
TI  - $C^*$-algebras associated to coverings of $k$-graphs
JO  - Documenta mathematica
PY  - 2008
SP  - 161
EP  - 205
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a15/
LA  - en
ID  - DOCMA_2008__13__a15
ER  - 
%0 Journal Article
%A Kumjian, Alex
%A Pask, David
%A Sims, Aidan
%T $C^*$-algebras associated to coverings of $k$-graphs
%J Documenta mathematica
%D 2008
%P 161-205
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a15/
%G en
%F DOCMA_2008__13__a15
Kumjian, Alex; Pask, David; Sims, Aidan. $C^*$-algebras associated to coverings of $k$-graphs. Documenta mathematica, Tome 13 (2008), pp. 161-205. http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a15/