Secondary invariants for Frechet algebras and quasihomomorphisms
Documenta mathematica, Tome 13 (2008), pp. 275-363.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A Fréchet algebra endowed with a multiplicatively convex topology has two types of invariants: homotopy invariants (topological $K$-theory and periodic cyclic homology) and secondary invariants (multiplicative $K$-theory and the non-periodic versions of cyclic homology). The aim of this paper is to establish a Riemann-Roch-Grothendieck theorem relating direct images for homotopy and secondary invariants of Fréchet $m$-algebras under finitely summable quasihomomorphisms.
Classification : 19D55, 19K56, 46L80, 46L87
Keywords: $K$-theory, bivariant cyclic cohomology, index theory
@article{DOCMA_2008__13__a13,
     author = {Perrot, Denis},
     title = {Secondary invariants for {Frechet} algebras and quasihomomorphisms},
     journal = {Documenta mathematica},
     pages = {275--363},
     publisher = {mathdoc},
     volume = {13},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a13/}
}
TY  - JOUR
AU  - Perrot, Denis
TI  - Secondary invariants for Frechet algebras and quasihomomorphisms
JO  - Documenta mathematica
PY  - 2008
SP  - 275
EP  - 363
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a13/
LA  - en
ID  - DOCMA_2008__13__a13
ER  - 
%0 Journal Article
%A Perrot, Denis
%T Secondary invariants for Frechet algebras and quasihomomorphisms
%J Documenta mathematica
%D 2008
%P 275-363
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a13/
%G en
%F DOCMA_2008__13__a13
Perrot, Denis. Secondary invariants for Frechet algebras and quasihomomorphisms. Documenta mathematica, Tome 13 (2008), pp. 275-363. http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a13/